Singular Value Decomposition and Applications

Uri Shaham
January 20, 2025

1 Introduction

Definition 1.1 (SVD). Let A € R™*™ be a real-valued matriz. The singular value decomposition (SVD)

of A is a matrix factorization
A=UxvT,

where U is n x n orthogonal matriz (i.e., UTU = I,x,), V is m x m orthogonal matriz and ¥ is n x m
“diagonal” matriz (i.e., £,; =0 for i # j, with nonnegative entries.

Observation 1.2. UXVT = Z:zl ouivl where r = min{n, m}, where o; := %;;.

Remark 1.3. Since only terms corresponding to nonzero singular values matter in the SVD of a n x m
matriz A, it is often convenient to include only the corresponding terms in the SVD, i.e., viewing the
matric U asnxr, X asrxXr and V as m xr. This is called the “compact” or “reduced” representation
of the SVD.

Remark 1.4. Without loss of generality, it is convenient to assume that the singular values are de-
creasingly ordered, i.e., 0; > 0 fori < j.

Observation 1.5. When n =m, A can be viewed as an operator from R™ to R™, acting on any vector
x by rotation (possibly with reflection), axis rescaling and another rotation.

1.1 Existence and uniqueness of SVD

Theorem 1.6 (Existence of SVD). Any matriz A € R™*™ has a SVD.

Proof. The matrix AT A is symmetric (clearly) and positive semi-definite (to see this, assume that A < 0
is an eigenvalue and let x be the corresponding eigenvector. Then

Z(Ax)f = (Az)T(Az) = 2T AT Az < 0,

K2

which is a contradiction.). Then ATA has an eigendecomposition ATA = VAVT with real (and

orthogonal) eigenvectors and non-negative eigenvalues. Let r = rank(ATA). Wlog, assume that
A > A,...>2 A >0and Ay =... =X, =0. Set g, = VA, fori =1,...,r. Define u; = % for
i=1,...,r. Then uq,...,u, are orthonormal:
1, _ WTAD Ay ol (ATAvy) ol (\oy) _ o
Uy Uj = = = = 0;5.
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Then U = AVE~!, so
UsvT = Avs—ievT = A.

Theorem 1.7. Let A =UXVT Then ¥ is uniquely determined.

Proof. This follows from the fact that the singular values of A are the square roots of the eigenvalues
of AT A, which are uniquely determined, up to order (being the roots of the characteristic polynomial

of AT A).
O

1.2 Power iteration

Observation 1.8. Let A = UXVT and let B = ATA. Then B = VX2V and more generally,
BF = V2?VT. Note that £2* is diagonal with entries Ufk.

Assume that o; > 5. Then for k large enough 0% > 02*, hence

B* = g o vl ~ ofFupol .
i

Let = be an arbitrary vector with nonzero component in the direction of vy, i.e., x = Z;nzl a;v;, and
a1 # 0. Then for sufficiently large k, B¥z ~ 0?*a;vy, i.e., B¥x is approximately in the direction of vy,

S0 V1, % — w1 as k — oo. This gives an approach to find vy:
e Starting from any vector xy not orthogonal to v; (a random vector would typically work):
e Repeat until ||z; — 2112 < e

1. ¢y + Bzxi_q



2. Normalize x to be of unit length, i.e., z; < H;—;”

In the homework you will extend this method to subsequent singular vectors.

2 Applications

2.1 Low rank approximation

Definition 2.1 (spectral norm). Let A = USVT = 37 w;v] be n x m matriz. The spectral norm
(also known as the operator norm) of A is defined as its largest singular value, i.e., ||A|l2 := o1.

Theorem 2.2 (spetral norm is matrix 2-norm.). [|All2 = sup,,=1 |4z
This will be proven next week,.

Theorem 2.3 (Eckart-Young, 1936). The best rank k approzimation of A in spectral norm is A =

k T
Z¢:1 OiUiv; -

Proof. First, note that [|A — Axlla = || 37—, osuiv] |2 = okt1. Let By be any n x m rank-k matrix,
i, By = XY7, where X and Y have k columns each. Since Y has k columns, there is a vector
w € span{vy,...,vg+1} which is orthogonal to any column in Y, i.e., w := Zj;l vjv; gives YTw = 0.

Then Byw = 0. Wlog ||w|| =1, i.e., Zf:ll v? =1 (by Pythagoras). Hence we have

|A— Bi||2 > ||(A — By)wl||3 (due to theorem 2.2)
= || Awll3

2
k+1

2 : T § :
= T;UV; Vi Vj
4 j=1
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2
k+1

= E 0;i7Yils
i=1

k41
= E o242 (as the above is a norm of a vector, expanded in the basis {u1, ..., um})
i=1
kt1

2
2 O+l Z%
i=1

= Ok+1
= [|A = Agl|.
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2.2 Pseudo inverse

Definition 2.4. The pseudo inverse of a full rank n x d matriz (withn > d) X = USVT is
Xt =XTx)'XxT =ve=2vTveu? =vy-u?.

Remark 2.5. Note that if X is not full rank, or if n < d, XT X is not invertible.



From linear regression, we know that pseudo inverse can be used to solve least squares problems
as follows. Let (X € R™? y € R™) be a training set of regression data, and let f = XTy. Then j3
minimizes the least squares prediction error, i.e.,

B = arg min || Xb — yHQ.
beRd

In the more general case, we write X1 = VXU, where $1 is obtained from ¥ by replacing all
nonzero singular values by their reciprocals.

2.3 Matrix square root

Let A be a symmetric n x n PSD matrix with SVD A = VXVT (in the homework you will be asked to
prove U = V whenever A is symmetric and PSD). Let ¥2 be diag(\/01,...,1/0n). Then for B = vyzyT
we have BB = A.

2.4 Sampling from multivariate normal distribution

Let K be a d x d covariance matrix (note that in particular, it is symmetric and PSD). To sample y € R?
from a N (p, K) normal distribution:

1. Fori=1,...d sample z; ~ N(0,1).

2. Set yzu—i—K%x.

Alternatively, let K = VEVT be the SVD of K.

1. Fori=1,...d sample z; ~ N (VT );,0;) - easy (why?).
2. Set y = V.

2.5 PCA

Let X be an x d matrix with mean-centered columns, representing n data points in d dimensions. Then
the sample covariance matrix is X7 X (up to constant multiplication). In PCA, the principal directions
are the eigenvectors V of the covariance matrix. If X = UXVT, the covariance is VX2V 7, therefore
the PCA embedding is XV = UX. The reconstruction is given by multiplying the embedding from
the right by V7T, i.e., USVT = X. Reconstruction from fewer terms therefore amounts to low-rank
approximation of X.



