
Singular Value Decomposition and Applications

Uri Shaham

January 20, 2025

1 Introduction

Definition 1.1 (SVD). Let A ∈ Rn×m be a real-valued matrix. The singular value decomposition (SVD)
of A is a matrix factorization

A = UΣV T ,

where U is n×n orthogonal matrix (i.e., UTU = In×n), V is m×m orthogonal matrix and Σ is n×m
“diagonal” matrix (i.e., Σij = 0 for i ̸= j, with nonnegative entries.

Observation 1.2. UΣV T =
∑r

i=1 σiuiv
T
i where r = min{n,m}, where σi := Σii.

Remark 1.3. Since only terms corresponding to nonzero singular values matter in the SVD of a n×m
matrix A, it is often convenient to include only the corresponding terms in the SVD, i.e., viewing the
matrix U as n× r, Σ as r× r and V as m× r. This is called the “compact” or “reduced” representation
of the SVD.

Remark 1.4. Without loss of generality, it is convenient to assume that the singular values are de-
creasingly ordered, i.e., σi ≥ σj for i < j.

Observation 1.5. When n = m, A can be viewed as an operator from Rn to Rn, acting on any vector
x by rotation (possibly with reflection), axis rescaling and another rotation.

1.1 Existence and uniqueness of SVD

Theorem 1.6 (Existence of SVD). Any matrix A ∈ Rn×m has a SVD.

Proof. The matrix ATA is symmetric (clearly) and positive semi-definite (to see this, assume that λ < 0
is an eigenvalue and let x be the corresponding eigenvector. Then∑

i

(Ax)2i = (Ax)T (Ax) = xTATAx < 0,

which is a contradiction.). Then ATA has an eigendecomposition ATA = V ΛV T with real (and
orthogonal) eigenvectors and non-negative eigenvalues. Let r = rank(ATA). Wlog, assume that
λ1 ≥ λ2, . . . ≥ λr > 0 and λr+1 = . . . = λm = 0. Set σi =

√
λi, for i = 1, . . . , r. Define ui =

Avi
σi

for
i = 1, . . . , r. Then u1, . . . , ur are orthonormal:

uT
i uj =

(vTi A
T )Avj

σiσj
=

vTi (A
TAvj)

σiσj
=

vTi (λjvj)

σiσj
= δij .

1



Then U = AV Σ−1, so
UΣV T = AV Σ−1ΣV T = A.

Theorem 1.7. Let A = UΣV T Then Σ is uniquely determined.

Proof. This follows from the fact that the singular values of A are the square roots of the eigenvalues
of ATA, which are uniquely determined, up to order (being the roots of the characteristic polynomial
of ATA).

1.2 Power iteration

Observation 1.8. Let A = UΣV T and let B = ATA. Then B = V Σ2V T and more generally,
Bk = V Σ2kV T . Note that Σ2k is diagonal with entries σ2k

i .

Assume that σ1 > σ2. Then for k large enough σ2k
1 ≫ σ2k

2 , hence

Bk =
∑
i

σ2k
i viv

T
i ≈ σ2k

1 v1v
T
1 .

Let x be an arbitrary vector with nonzero component in the direction of v1, i.e., x =
∑m

i=1 αivi, and
α1 ̸= 0. Then for sufficiently large k, Bkx ≈ σ2k

1 α1v1, i.e., B
kx is approximately in the direction of v1,

so v1,
Bkx

∥Bkx∥ → v1 as k →∞. This gives an approach to find v1:

• Starting from any vector x0 not orthogonal to v1 (a random vector would typically work):

• Repeat until ∥xt − xt−1∥2 ≤ ϵ:

1. xt ← Bxt−1
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2. Normalize x to be of unit length, i.e., xt ← xt

∥xt∥ .

In the homework you will extend this method to subsequent singular vectors.

2 Applications

2.1 Low rank approximation

Definition 2.1 (spectral norm). Let A = UΣV T =
∑r

i=1 uiv
T
i be n ×m matrix. The spectral norm

(also known as the operator norm) of A is defined as its largest singular value, i.e., ∥A∥2 := σ1.

Theorem 2.2 (spetral norm is matrix 2-norm.). ∥A∥2 = sup∥x∥2=1 ∥Ax∥2

This will be proven next week,.

Theorem 2.3 (Eckart-Young, 1936). The best rank k approximation of A in spectral norm is Ak =∑k
i=1 σiuiv

T
i .

Proof. First, note that ∥A − Ak∥2 = ∥
∑r

i=k+1 σiuiv
T
i ∥2 = σk+1. Let Bk be any n ×m rank-k matrix,

i.e., Bk = XY T , where X and Y have k columns each. Since Y has k columns, there is a vector
w ∈ span{v1, . . . , vk+1} which is orthogonal to any column in Y, i.e., w :=

∑k+1
j=1 γjvj gives Y Tw = 0.

Then Bkw = 0. Wlog ∥w∥ = 1, i.e.,
∑k+1

i=1 γ2 = 1 (by Pythagoras). Hence we have

∥A−Bk∥22 ≥ ∥(A−Bk)w∥22 (due to theorem 2.2)

= ∥Aw∥22

=

∥∥∥∥∥∥
∑
i

σiuiv
T
i

k+1∑
j=1

γjvj

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥
k+1∑
i=1

σiγiui

∥∥∥∥∥
2

2

=

k+1∑
i=1

σ2
i γ

2
i (as the above is a norm of a vector, expanded in the basis {u1, . . . , um})

≥ σk+1

k+1∑
i=1

γ2
i

= σk+1

= ∥A−Ak∥.

2.2 Pseudo inverse

Definition 2.4. The pseudo inverse of a full rank n× d matrix (with n ≥ d) X = UΣV T is

X† := (XTX)−1XT = V Σ−2V TV ΣUT = V Σ−1UT .

Remark 2.5. Note that if X is not full rank, or if n < d, XTX is not invertible.
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From linear regression, we know that pseudo inverse can be used to solve least squares problems
as follows. Let (X ∈ Rn×d, y ∈ Rn) be a training set of regression data, and let β = X†y. Then β
minimizes the least squares prediction error, i.e.,

β = arg min
b∈Rd
∥Xb− y∥2.

In the more general case, we write X† = V Σ†UT , where Σ† is obtained from Σ by replacing all
nonzero singular values by their reciprocals.

2.3 Matrix square root

Let A be a symmetric n× n PSD matrix with SVD A = V ΣV T (in the homework you will be asked to

prove U = V whenever A is symmetric and PSD). Let Σ
1
2 be diag(

√
σ1, . . . ,

√
σn). Then for B = V Σ

1
2V T

we have BB = A.

2.4 Sampling from multivariate normal distribution

Let K be a d×d covariance matrix (note that in particular, it is symmetric and PSD). To sample y ∈ Rd

from a N (µ,K) normal distribution:

1. For i = 1, . . . d sample xi ∼ N (0, 1).

2. Set y = µ+K
1
2x.

Alternatively, let K = V ΣV T be the SVD of K.

1. For i = 1, . . . d sample xi ∼ N ((V Tµ)i, σi) - easy (why?).

2. Set y = V x.

2.5 PCA

Let X be a n×d matrix with mean-centered columns, representing n data points in d dimensions. Then
the sample covariance matrix is XTX (up to constant multiplication). In PCA, the principal directions
are the eigenvectors V of the covariance matrix. If X = UΣV T , the covariance is V Σ2V T , therefore
the PCA embedding is XV = UΣ. The reconstruction is given by multiplying the embedding from
the right by V T , i.e., UΣV T = X. Reconstruction from fewer terms therefore amounts to low-rank
approximation of X.
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