Singular Value Decomposition and Applications

Uri Shaham

January 20, 2025

1 Introduction

Definition 1.1 (SVD). Let $A \in \mathbb{R}^{n \times m}$ be a real-valued matrix. The singular value decomposition (SVD) of A is a matrix factorization

$$A = U\Sigma V^T,$$

where U is $n \times n$ orthogonal matrix (i.e., $U^TU = I_{n \times n}$), V is $m \times m$ orthogonal matrix and Σ is $n \times m$ "diagonal" matrix (i.e., $\Sigma_{ij} = 0$ for $i \neq j$, with nonnegative entries.

Observation 1.2. $U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$ where $r = \min\{n, m\}$, where $\sigma_i := \sum_{ii} \sigma_i u_i v_i^T$

Remark 1.3. Since only terms corresponding to nonzero singular values matter in the SVD of a $n \times m$ matrix A, it is often convenient to include only the corresponding terms in the SVD, i.e., viewing the matrix U as $n \times r$, Σ as $r \times r$ and V as $m \times r$. This is called the "compact" or "reduced" representation of the SVD.

Remark 1.4. Without loss of generality, it is convenient to assume that the singular values are decreasingly ordered, i.e., $\sigma_i \geq \sigma_j$ for i < j.

Observation 1.5. When n = m, A can be viewed as an operator from \mathbb{R}^n to \mathbb{R}^n , acting on any vector x by rotation (possibly with reflection), axis rescaling and another rotation.

1.1 Existence and uniqueness of SVD

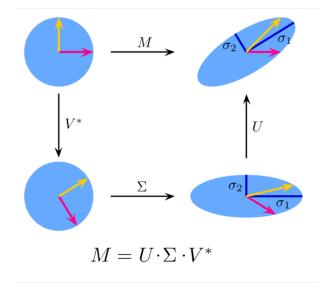
Theorem 1.6 (Existence of SVD). Any matrix $A \in \mathbb{R}^{n \times m}$ has a SVD.

Proof. The matrix A^TA is symmetric (clearly) and positive semi-definite (to see this, assume that $\lambda < 0$ is an eigenvalue and let x be the corresponding eigenvector. Then

$$\sum_{i} (Ax)_{i}^{2} = (Ax)^{T} (Ax) = x^{T} A^{T} Ax < 0,$$

which is a contradiction.). Then A^TA has an eigendecomposition $A^TA = V\Lambda V^T$ with real (and orthogonal) eigenvectors and non-negative eigenvalues. Let $r = \operatorname{rank}(A^TA)$. Wlog, assume that $\lambda_1 \geq \lambda_2, \ldots \geq \lambda_r > 0$ and $\lambda_{r+1} = \ldots = \lambda_m = 0$. Set $\sigma_i = \sqrt{\lambda_i}$, for $i = 1, \ldots, r$. Define $u_i = \frac{Av_i}{\sigma_i}$ for $i = 1, \ldots, r$. Then u_1, \ldots, u_r are orthonormal:

$$u_i^T u_j = \frac{(v_i^T A^T) A v_j}{\sigma_i \sigma_i} = \frac{v_i^T (A^T A v_j)}{\sigma_i \sigma_i} = \frac{v_i^T (\lambda_j v_j)}{\sigma_i \sigma_i} = \delta_{ij}.$$



Then $U = AV\Sigma^{-1}$, so

$$U\Sigma V^T = AV\Sigma^{-1}\Sigma V^T = A.$$

Theorem 1.7. Let $A = U\Sigma V^T$ Then Σ is uniquely determined.

Proof. This follows from the fact that the singular values of A are the square roots of the eigenvalues of A^TA , which are uniquely determined, up to order (being the roots of the characteristic polynomial of A^TA).

1.2 Power iteration

Observation 1.8. Let $A = U\Sigma V^T$ and let $B = A^TA$. Then $B = V\Sigma^2 V^T$ and more generally, $B^k = V\Sigma^{2k}V^T$. Note that Σ^{2k} is diagonal with entries σ_i^{2k} .

Assume that $\sigma_1 > \sigma_2$. Then for k large enough $\sigma_1^{2k} \gg \sigma_2^{2k}$, hence

$$B^k = \sum_i \sigma_i^{2k} v_i v_i^T \approx \sigma_1^{2k} v_1 v_1^T.$$

Let x be an arbitrary vector with nonzero component in the direction of v_1 , i.e., $x = \sum_{i=1}^m \alpha_i v_i$, and $\alpha_1 \neq 0$. Then for sufficiently large k, $B^k x \approx \sigma_1^{2k} \alpha_1 v_1$, i.e., $B^k x$ is approximately in the direction of v_1 , so v_1 , $\frac{B^k x}{\|B^k x\|} \to v_1$ as $k \to \infty$. This gives an approach to find v_1 :

- Starting from any vector x_0 not orthogonal to v_1 (a random vector would typically work):
- Repeat until $||x_t x_{t-1}||_2 \le \epsilon$:

1.
$$x_t \leftarrow Bx_{t-1}$$

2. Normalize x to be of unit length, i.e., $x_t \leftarrow \frac{x_t}{\|x_t\|}$.

In the homework you will extend this method to subsequent singular vectors.

2 Applications

2.1 Low rank approximation

Definition 2.1 (spectral norm). Let $A = U\Sigma V^T = \sum_{i=1}^r u_i v_i^T$ be $n \times m$ matrix. The spectral norm (also known as the operator norm) of A is defined as its largest singular value, i.e., $||A||_2 := \sigma_1$.

Theorem 2.2 (spetral norm is matrix 2-norm.). $||A||_2 = \sup_{||x||_2=1} ||Ax||_2$

This will be proven next week,.

Theorem 2.3 (Eckart-Young, 1936). The best rank k approximation of A in spectral norm is $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$.

Proof. First, note that $\|A-A_k\|_2 = \|\sum_{i=k+1}^r \sigma_i u_i v_i^T\|_2 = \sigma_{k+1}$. Let B_k be any $n \times m$ rank-k matrix, i.e., $B_k = XY^T$, where X and Y have k columns each. Since Y has k columns, there is a vector $w \in \operatorname{span}\{v_1,\ldots,v_{k+1}\}$ which is orthogonal to any column in Y, i.e., $w := \sum_{j=1}^{k+1} \gamma_j v_j$ gives $Y^Tw = 0$. Then $B_k w = 0$. Wlog $\|w\| = 1$, i.e., $\sum_{i=1}^{k+1} \gamma^2 = 1$ (by Pythagoras). Hence we have

$$\begin{split} \|A - B_k\|_2^2 &\geq \|(A - B_k)w\|_2^2 \text{ (due to theorem 2.2)} \\ &= \|Aw\|_2^2 \\ &= \left\|\sum_i \sigma_i u_i v_i^T \left(\sum_{j=1}^{k+1} \gamma_j v_j\right)\right\|_2^2 \\ &= \left\|\sum_{i=1}^{k+1} \sigma_i \gamma_i u_i\right\|_2^2 \\ &= \sum_{i=1}^{k+1} \sigma_i^2 \gamma_i^2 \text{ (as the above is a norm of a vector, expanded in the basis } \{u_1, \dots, u_m\}) \\ &\geq \sigma_{k+1} \sum_{i=1}^{k+1} \gamma_i^2 \\ &= \sigma_{k+1} \\ &= \|A - A_k\|. \end{split}$$

2.2 Pseudo inverse

Definition 2.4. The pseudo inverse of a full rank $n \times d$ matrix (with $n \ge d$) $X = U\Sigma V^T$ is

$$X^{\dagger} := (X^T X)^{-1} X^T = V \Sigma^{-2} V^T V \Sigma U^T = V \Sigma^{-1} U^T.$$

Remark 2.5. Note that if X is not full rank, or if n < d, X^TX is not invertible.

From linear regression, we know that pseudo inverse can be used to solve least squares problems as follows. Let $(X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^n)$ be a training set of regression data, and let $\beta = X^{\dagger}y$. Then β minimizes the least squares prediction error, i.e.,

$$\beta = \arg\min_{b \in \mathbb{R}^d} ||Xb - y||^2.$$

In the more general case, we write $X^{\dagger} = V \Sigma^{\dagger} U^{T}$, where Σ^{\dagger} is obtained from Σ by replacing all nonzero singular values by their reciprocals.

2.3 Matrix square root

Let A be a symmetric $n \times n$ PSD matrix with SVD $A = V \Sigma V^T$ (in the homework you will be asked to prove U = V whenever A is symmetric and PSD). Let $\Sigma^{\frac{1}{2}}$ be diag $(\sqrt{\sigma_1}, \dots, \sqrt{\sigma_n})$. Then for $B = V \Sigma^{\frac{1}{2}} V^T$ we have BB = A.

2.4 Sampling from multivariate normal distribution

Let K be a $d \times d$ covariance matrix (note that in particular, it is symmetric and PSD). To sample $y \in \mathbb{R}^d$ from a $\mathcal{N}(\mu, K)$ normal distribution:

- 1. For $i = 1, \ldots d$ sample $x_i \sim \mathcal{N}(0, 1)$.
- 2. Set $y = \mu + K^{\frac{1}{2}}x$.

Alternatively, let $K = V \Sigma V^T$ be the SVD of K.

- 1. For i = 1, ... d sample $x_i \sim \mathcal{N}((V^T \mu)_i, \sigma_i)$ easy (why?).
- 2. Set y = Vx.

2.5 PCA

Let X be a $n \times d$ matrix with mean-centered columns, representing n data points in d dimensions. Then the sample covariance matrix is X^TX (up to constant multiplication). In PCA, the principal directions are the eigenvectors V of the covariance matrix. If $X = U\Sigma V^T$, the covariance is $V\Sigma^2 V^T$, therefore the PCA embedding is $XV = U\Sigma$. The reconstruction is given by multiplying the embedding from the right by V^T , i.e., $U\Sigma V^T = X$. Reconstruction from fewer terms therefore amounts to low-rank approximation of X.